Normal sequences over finite abelian groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On non-normal non-abelian subgroups of finite groups

‎In this paper we prove that a finite group $G$ having at most three‎ ‎conjugacy classes of non-normal non-abelian proper subgroups is‎ ‎always solvable except for $Gcong{rm{A_5}}$‎, ‎which extends Theorem 3.3‎ ‎in [Some sufficient conditions on the number of‎ ‎non-abelian subgroups of a finite group to be solvable‎, ‎Acta Math‎. ‎Sinica (English Series) 27 (2011) 891--896.]‎. ‎Moreover‎, ‎we s...

متن کامل

Unextendible Sequences in Finite Abelian Groups

Let G = Cn1 ⊕ . . . ⊕ Cnr be a finite abelian group with r = 1 or 1 < n1| . . . |nr, and let S = (a1, . . . , at) be a sequence of elements in G. We say S is an unextendible sequence if S is a zero-sum free sequence and for any element g ∈ G, the sequence Sg is not zero-sum free any longer. Let L(G) = dlog2 n1e + . . . + dlog2 nre and d∗(G) = ∑r i=1(ni−1), in this paper we prove, among other re...

متن کامل

Gabor Analysis over Finite Abelian Groups

Gabor frames for signals over finite Abelian groups, generated by an arbitrary lattice within the finite time-frequency plane, are the central topic of this paper. Our generic approach covers both multi-dimensional signals as well as non-separable lattices, and in fact the multi-window case as well. Our generic approach includes most of the fundamental facts about Gabor expansions of finite sig...

متن کامل

The Dirac Operator over Abelian Finite Groups

In this paper we show how to construct a Dirac operator on a lattice in complete analogy with the continuum. In fact we consider a more general problem, that is, the Dirac operator over an abelian finite group (for which a lattice is a particular example). Our results appear to be in direct connexion with the so called fermion doubling problem. In order to find this Dirac operator we need to in...

متن کامل

Linear equations over finite abelian groups

One of the oldest problems in algebra is the solution of a system of linear equations over certain domains. The Gaussian elimination algorithm provides an effective solution over fields. The Smith normal form algorithm yields a method over the integers. Here we consider another variation of this theme. Let A be a finite (additive) abelian group, let αi,j ∈ End(A) for 1 ≤ i ≤ n and 1 ≤ j ≤ m and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2011

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2010.11.009